
# Strategic Initiative: Pathways to Decarbonization

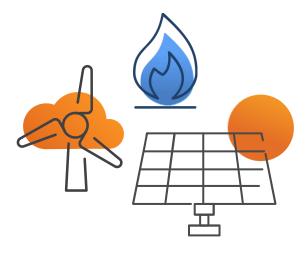
# **Board of Directors Update March 2021**


Jeremy Bowers, Jessica de la Torre, Colton Kennedy, Paul Fortney, Emily Muth March 16, 2021

# Agenda

- 1. Community
- 2. Customer
- 3. Internal Operations
- 4. Energy Portfolio
- 5. Outreach




**Community Partner** 



Customer Products & Services



**Internal Operations** 



**Energy Portfolio** 







# **Decarbonization: Community Project**



# **Community Decarbonization Strategy**



Evaluate and prioritize community-scale decarbonization strategies to identify where OPPD can engage local communities as the recognized subject matter expert on decarbonization and environmental stewardship.







# **Our Approach**

#### **COMMUNITY LENS**

#### A Different Perspective

- Review Climate Action Plans to understand how communities approach decarbonization
- Aggregate decarbonization and adaptation strategies across Climate Action Plans to identify shared areas of focus.





### **Selected Climate Action Plans**

- Mix of regionally and peer utility relevant communities.
- Recent Climate Action Plans; varying level of detail for Greenhouse Gas (GHG) mitigation measures.
- 4 of 6 communities declared a climate emergency in 2019.











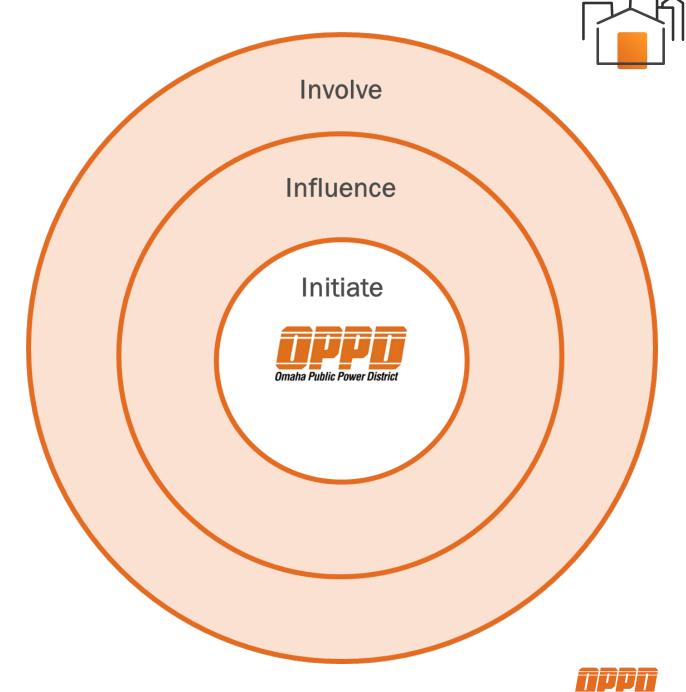






## **Our Approach**

### Influence Meaningful Change


- Define Degree of Influence concept as key consideration for identifying collaboration opportunities.
- Determine other attributes of shared decarbonization strategies to develop prioritization framework.

#### **COMMUNITY LENS**

PRIORITIZATION FRAMEWORK



Degree of Influence concept categorizes actions related to OPPD's ability to effect change across the service territory.







## **Our Approach**

- Evaluate each aggregated decarbonization strategy applying the prioritization framework.
- Identify key collaborators for priority decarbonization strategies.

**Focus on What Matters Most** 

**COMMUNITY LENS** 

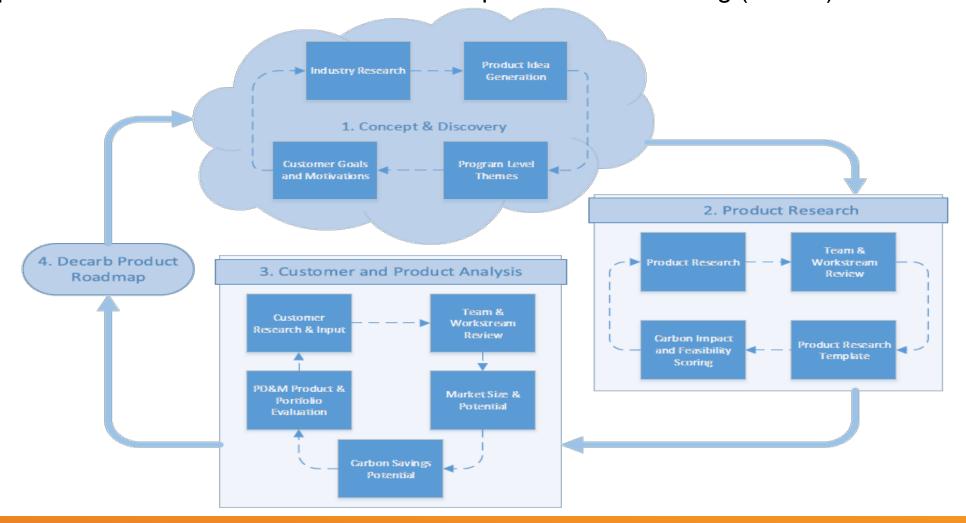
**EVALUATION** FRAMEWORK

PRIORITY AREAS








# Decarbonization: Customer Project



### **Decarb Product Evaluation Framework**



The decarb product roadmap deliverable isn't a one and done exercise, but a continuous ongoing process resourced within Product Development and Marketing (PD&M).



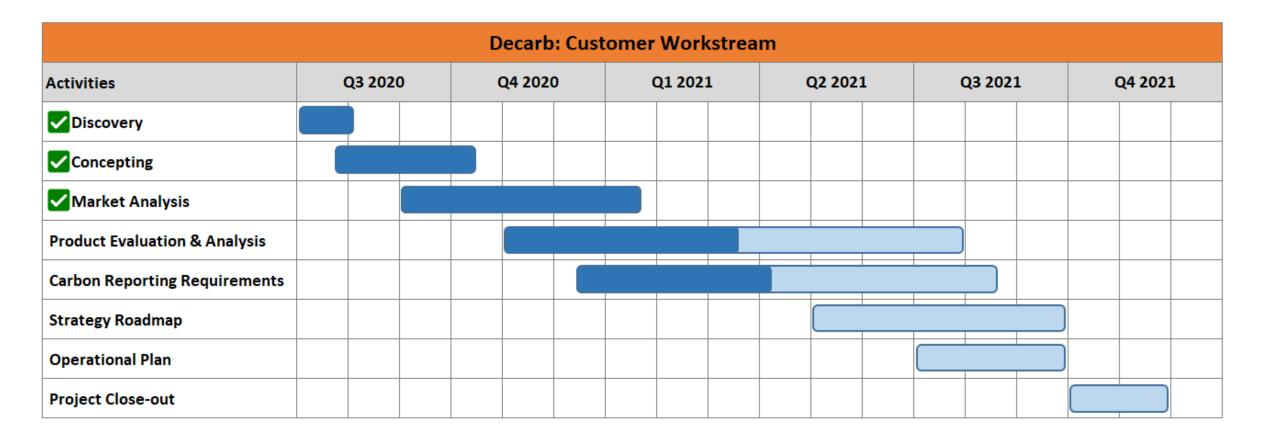


#### **Decarb: Customer Motivations**



#### **Residential:**

- Customers want to positively impact the environment, improve reliability and save money, but lack the education and information to take action
- Customers believe they can make an impact and in many cases would be willing pay a little more to do so
- Customers believe in corporate responsibility to improve the environment and prefer to do business with those demonstrating leadership
- Only 4% of OPPD customers feel their utility is most responsible for improving the environment, rather they view as a trusted source for information for what they can do personally.


#### C&I:

- Solutions seem big, intimidating and there is a desire for more education
- Sustainability is almost a requirement
- Customers look at utilities to help and partner with to make an impact (more so than residential).

Sources: DSM Potential Study, What Does Green Mean to You Workshop, JD Power Results, Cogent Results, Green Power Redesign Phase I, Other Utilities Decarb Strategies (Austin Power, Duke Energy, etc...)

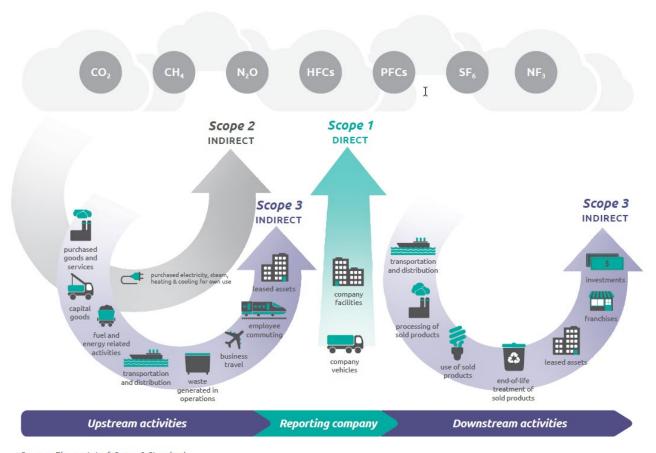


# **Project Timeline**










# Decarbonization: Internal Operations Project





## **Internal Operations Project**



Source: Figure 1.1 of Scope 3 Standard.

- Benchmark
  - Large Public Power Council (LPPC) Survey:
    - 19 response received
    - 7 utilities currently conducted a corporate inventory of Green House Gas (GHG) emissions
  - 2019 CDP Climate Change Reports
    - Reviewed 14 reports from electric utilities
- Ruby Canyon Environmental Engagement
  - Led quantification on 3 emission sources
  - Reviewed methodology OPPD used for quantification on other emission sources
- Organizational Boundary: Equity share approach
- Operational Boundary



# GHG Scope 1, 2 and 3



#### Scope 1 Emission Sources:

- Stationary Combustion Sources
  - Fossil Generation
  - Internal Combustion Engines: Emergency Engines, Auxiliary boilers
- Mobile Combustion Sources
  - Vehicle Fleet
  - Equipment Propane
  - Coal Handling Equipment
- Process/Fugitive Sources
  - Refrigerants (facilities and transportation)
  - Coal Pile
  - T&D SF6 Leaks
  - Natural Gas Pipeline
  - Welding-Acetylene
  - Fire Suppression Systems

#### Scope 2 Emission Sources:

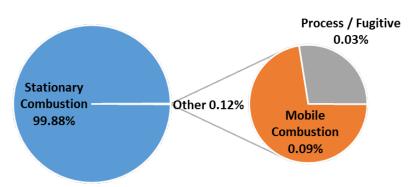
- OPPD Consumed Electricity
- T&D Losses

#### Scope 3 Emission Sources:

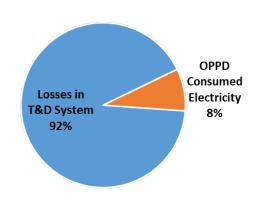
- Purchased Goods and Services\*
- Energy and Fuel Related Activities
  - Coal Purchases
  - Coal Rail Transportation
  - Purchased Power Delivered to End-Users
  - Natural Gas Purchases
- Business Travel
- Employee Commute
- Waste



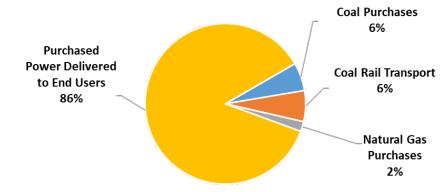
<sup>\*</sup> Capital Goods emissions included in this category




# GHG Scopes 1, 2 and 3


|         | Metric tons CO₂e |            |           |            |
|---------|------------------|------------|-----------|------------|
|         | 2017             | 2018       | 2019      | Average    |
| Scope 1 | 10,657,608       | 10,951,779 | 9,161,659 | 10,257,015 |
| Scope 2 | 73,646           | 69,581     | 84,601    | 75,942     |
|         | 10,731,254       | 11,021,359 | 9,246,260 | 10,332,958 |

|                                           | Metric tons CO₂e |           |           |           |
|-------------------------------------------|------------------|-----------|-----------|-----------|
| Scope 3                                   | 2017             | 2018      | 2019      | Average   |
| Purchased Goods and Services              | 178,869          | 113,939   | 133,088   | 141,965   |
| <b>Energy and Fuel Related Activities</b> | 1,345,651        | 1,263,055 | 1,679,940 | 1,429,549 |
| Waste                                     | 10,001           | 13,519    | 8,583     | 10,701    |
| Business Travel                           | 257              | 255       | 277       | 263       |
| Employee Commute                          | 4,775            | 4,286     | 4,388     | 4,483     |
|                                           | 1,539,552        | 1,395,054 | 1,826,274 | 1,586,960 |


**Scope 1: Avg Emissions** 



**Scope 2: Avg Emissions** 



## Energy and Fuel Related Activities: Avg Emissions







## **GHG Inventory and Next Steps**

|             |            | Metric tons | s CO₂e     |            |
|-------------|------------|-------------|------------|------------|
|             | 2017       | 2018        | 2019       | Average    |
| Required    |            |             |            |            |
| Scope 1     | 10,657,608 | 10,951,779  | 9,161,659  | 10,257,015 |
| Scope 2     | 73,646     | 69,581      | 84,601     | 75,942     |
| Scope 1+2   | 10,731,254 | 11,021,359  | 9,246,260  | 10,332,958 |
| Optional    |            |             |            |            |
| Scope 3     | 1,539,552  | 1,395,054   | 1,826,274  | 1,586,960  |
| Scope 1+2+3 | 12,270,806 | 12,416,413  | 11,072,534 | 11,919,918 |

#### **Key Takeaways for Internal Operations**

- Net-zero carbon goal:
  - Scopes 1 and 2 include in SD7 net zero carbon goal
- Scope 3
  - Continue measuring Energy and Fuel Related Services category
  - Purchased goods and services category
    - One-time detailed exercise (2019)
    - Other years emissions derived
    - Evaluate in 5 year if detailed exercise should be repeated
- GHG Inventory
  - Part of OPPD's sustainability program
    - Once established, OPPD to evaluate if it will report to a program
  - Conducting the yearly GHG inventory will now transition to the Environmental Team





# **Sustainability: Think Bigger**

 Triple Bottom Line framework encompasses economic, social and environmental performance.

 Evolved into an accounting framework and balancing act driven by a trade-

off mentality.

Instead imagine...



Harvard Business Review, "25 Years Ago I Coined the Phrase "Triple Bottom Line." Here's Why It's Time to Rethink It," John Elkington, June 2018





# Sustainability Framework Development Approach







## **Draft Sustainability Framework**









# Decarbonization: Energy Portfolio Project





# **Energy Portfolio Update**

- E3 introduction
- Overall project plan
- Technical modeling
- High-level stakeholder plan
- Integrated Resource Plan coordination
- Multi-sectoral modeling
- Net-Zero goal modeling approach
- Key takeaways



### E3 Introduction



#### **Energy+Environmental Economics**

- E3 is a San Francisco-based consulting firm founded in 1989 specializing in electricity economics with approximately 75 staff
- E3 consults extensively for utilities, developers, government agencies, and environmental groups on clean energy issues
- Services for a wide variety of clients made possible through an analytical, unbiased approach
- Our experts provide critical thought leadership, publishing regularly in peer reviewed journals and leading industry publications



**Arne Olson** Senior Partner Responsible Partner

Mr. Olson leads E3's resource planning practice. Since joining E3 in 2002, he has led numerous analyses of how renewable energy and greenhouse gas policy goals could impact system operations, transmission, and energy markets.



**Zach Ming** Director **Project Lead** 

Mr. Ming leads the development of energy models and communicates findings on behalf of utilities, regulatory agencies, and trade groups. Since joining E3 in 2013, he has managed numerous resource planning projects and teaches a class at Stanford University on electricity economics.



**Aaron Burdick** Managing Consultant **Project Manager** 

Mr. Burdick joined E3 in 2019 and helps E3 clients solve technical and policy challenges related to renewable energy integration. He joined E3 from utility Pacific Gas & Electric, where he led the development of PG&E's 2018 Integrated Resource Plan. Aaron also spent four years at energy consultancy ICF International.

#### **Additional Staff**



Gabe Mantegna



Ari Gold-Parker







**Bill Wheatle** 



Charlie Duff

Sample E3 Clients:









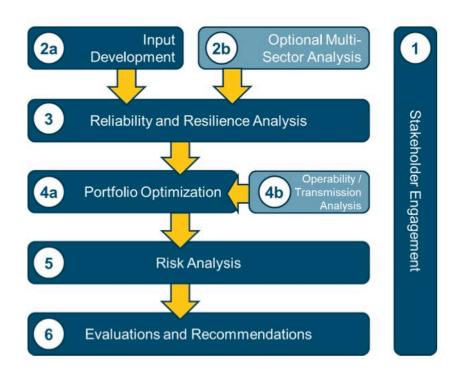










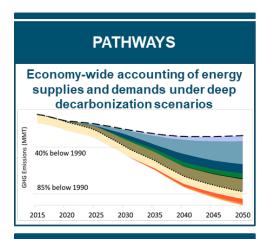


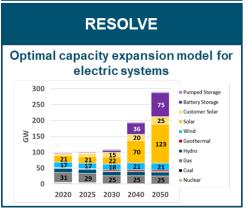


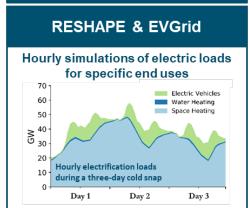


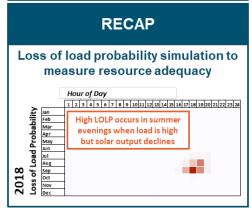

 OPPD's full Energy Portfolio decarbonization study encompasses multiple sequential technical analyses that will take place throughout 2021

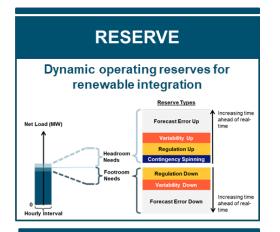
|                                 | Timeline |
|---------------------------------|----------|
| Multi-Sector Modeling           | Jan-Feb  |
|                                 |          |
| Reliability/Resiliency Analysis | Mar-Jun  |
|                                 |          |
| Portfolio Optimization          | Jun-Sep  |
|                                 |          |
| Risk Analysis                   | Aug-Oct  |
|                                 |          |
| Final Report/Findings           | Nov-Dec  |
|                                 |          |

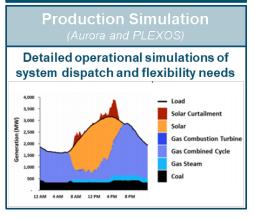




## **Technical Modeling**





- The Energy Portfolio analyses leverages E3's suite of technical modeling tools to achieve deep portfolio decarbonization
- E3's analysis is paired with robust resource adequacy and operability studies to ensure technical portfolio feasibility
- The modeling effort will NOT include detailed transmission and power-flow analyses. <u>Further studies will be</u> required prior to final decisions or actions













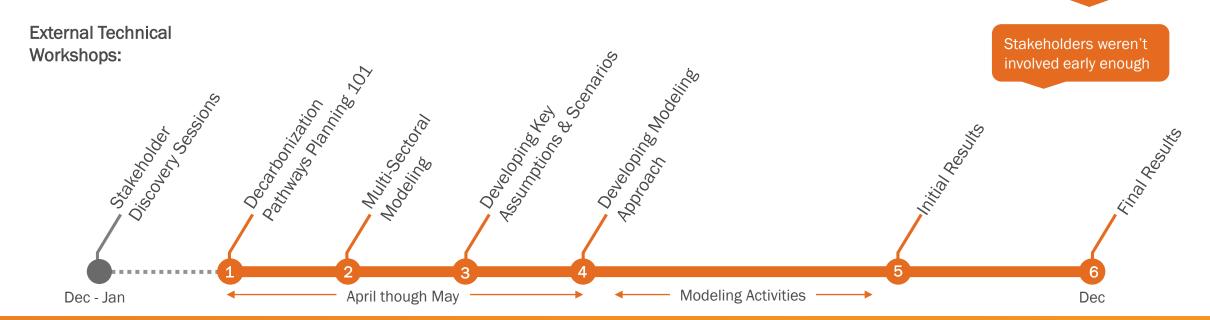



### **High-Level Stakeholder Plan**

#### A Broad and Inclusive Stakeholder Process:

- Six (6) technical external stakeholder workshops throughout the modeling process
- Six (6) internal workshops open to employees
- Facility Ambassadors to support internal conversations
- OPPD Community Connect online portal
- The Wire and online outreach

We want to understand why decisions are being made




We want transparency on assumptions and how feedback was used

We felt 'informed' during last IRP but didn't contribute to the process

We want to see ambitious scenarios

I'd like infographics to understand and share OPPD's considerations





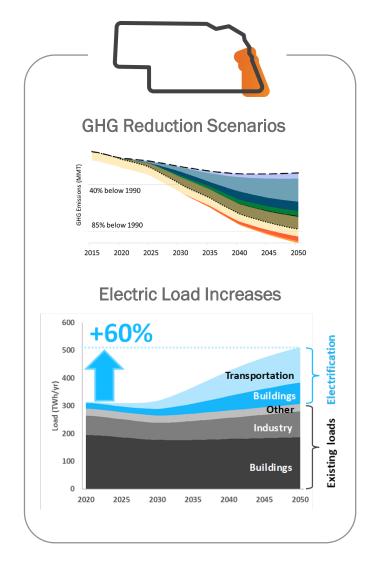
# Integrated Resource Plan (IRP) & Decarbonization Coordination

Two major resource planning tasks will occur in 2021:

- Decarbonization: Energy Portfolio is due <u>December 2021</u>
  - Due date is set by OPPD's Senior Management Team(SMT) and Board of Directors (BOD)
- 5-Year Integrated Resource Plan (IRP) is due <u>February 28<sup>th</sup>, 2022</u>
  - OPPD is legally required to submit a 5-Year IRP to Western Area Power Administration (WAPA)
  - Requirements outlined by 10 Code of Federal Regulations 905 (10.CFR.905)
  - OPPD may file an extension up to 6 months
- Both tasks outline OPPD's future resource portfolio. They vary in that:
  - IRP must include specific plans in the next 5 years
  - Decarbonization will identify 'actionable pathways'








- OPPD's intent is to use the results of the decarbonization study to inform its Integrated Resource Plan filing
- Dependent on BOD satisfaction with modeling progress, stakeholder engagement, and unforeseen modeling complexities, there is risk that modeling may extend past the IRP submission deadline
- In the case that the Energy Portfolio modeling extends beyond the IRP deadline, OPPD would file its current 5-Year resource plan and update its plan with WAPA after completion of its study



## **Multi-Sector Modeling**





- Economy-wide decarbonization will create direct impacts on electric load growth
  - Examples include electrification of transportation, heating, agriculture, and other end uses
- E3 and OPPD will conduct broad modeling across industry segments as inputs into its decarbonization modeling
- Multi-Sectoral modeling results will support OPPD's broader decarbonization leadership in the community



### **Approaches to Net Zero Carbon**



more constrained

less constrained

#### 100% Renewables

- 100% of generation from wind, solar, hydro, and battery storage
- No combustion or nuclear

#### **Zero Carbon**

- 100% of generation from zero-emitting resources
- Leaves room for hydrogen, renewable natural gas, nuclear, and/or CCS

## Net Zero Carbon

 Leaves room for some continued fossil generation due to some sort of offset(s)

## Near-zero Carbon

 Allows for minimal electricity emissions (e.g. 1-5% of generation)

Not technically or economically feasible (except maybe in regions with very high hydropower penetrations), but included for completeness

Inconsistent with OPPD's "net-zero carbon"
goal, but could be studied to draw out carbon
abatement cost curve



## **Net Zero GHG Offset Types**





#### **Electricity Exports**

**Description**: net-zero is defined on an annual basis, allowing emitting generation or imports to be offset by zero-emitting exports.

**Pros**: low cost; encourages regional coordination.

**Cons**: breaks down when neighboring jurisdictions are also pursuing the same net zero carbon goal.



#### **Intersectoral Credit**

**Description**: claiming credit for emissions reductions achieved through electrifying other sectors.

**Pros**: low to zero cost; supports utility action on electrification.

**Cons**: incompatible with an economy-wide net zero target, which is needed to meet climate goals; challenging to confirm "incrementality" of utility actions.



#### **GHG Offsets**

**Description**: involves the purchase of traditional GHG offsets, which can include projects such as tree planting or carbon/methane capture.

**Pros**: low cost.

**Cons**: difficult to prove "additionality" of GHG offsets (would they have been pursued anyways?); not necessarily compatible with an economy-wide net zero target.



#### **Negative Emissions**

**Description**: offsetting remaining emissions through negative emissions technologies such as Direct Air Capture.

**Pros**: compatible with an economy-wide net zero target; possibly lower cost than 100% zero-carbon electricity.

**Cons**: high cost uncertainty due to lack of commercialized technologies.



## **Modeling Net Zero**



#### **Contributions**

**GHG Protocol** Based

| Scope   | Description                                                  | <b>Avg. CO2e</b><br>2017-2019 |
|---------|--------------------------------------------------------------|-------------------------------|
| Scope 1 | Stationary Combustion                                        | 10,244,688                    |
|         | Other (vehicles, fugitive emissions)                         | 12,327                        |
| Scope 2 | All (used electricity, T&D losses)                           | 75,942                        |
| Scope 3 | Purchased Power (used to serve end-use customers)            | 1,230,558                     |
|         | Other (fuel related activities, bus. Travel, commute, waste) | 356,402                       |
|         | ·                                                            | 356,402                       |

Total CO2e Contributions, Tons

| Inclusion in Energy<br>Portfolio Modeling |
|-------------------------------------------|
| Include                                   |
| Excluded                                  |
| Include                                   |
| Include                                   |
| Excluded                                  |

Note: Emission sources shown here as excluded from the energy portfolio modeling efforts will be addressed through OPPD's Internal Operations and Sustainability efforts.

#### Offsets

**OPPD** Selected Offsets

|   | Description                     | CO2e |
|---|---------------------------------|------|
|   | GHG Offsets                     | 0    |
| 2 | Negative Emissions Technologies | 0    |
|   | Electricity Exports             | 0    |
|   | Inter-sectoral Credits          | NA   |
|   | Total CO2e Offsets, Tons        | 0    |

Net CO2e, Tons

11,919,918

11,919,918

| Inclusion in Energy<br>Portfolio Modeling |
|-------------------------------------------|
| Sensitivity Analysis                      |
| 0 445 44 - 4 4 1                          |

Sensitivity Analysis

Sensitivity Analysis

Excluded

Note: OPPD will continue to advocate for inter-sectoral GHG reductions, but is not intending to consider those efforts as portfolio offsets in its modeling.







 Multiple modeling GHG objectives will frame the cost and technology impacts of alternative approaches and inform OPPD's future definition of its Net Zero goal

#### Absolute Zero

- 100% GHG Reduction
- No Offsets or Negative Emissions Technologies

#### Net-Zero

- 100% GHG Reduction
- GHG Offsets and Negative Emissions Technologies Allowed
- Sensitivity with Electricity Export offsets

#### Near-Zero

- 80% to 95% GHG Reductions
- GHG Offsets and Negative Emissions Technologies Allowed
- These scenarios inform OPPD of the marginal cost and potential technology alternatives as it approaches its Net Zero goal



## **Energy Portfolio Key Takeaways**



#### Current Activities

- Refining and beginning to implement the internal and external stakeholder plan
- Initiating multi-sectoral modeling
- Gathering financial and production data for OPPD's existing assets
- Identifying and selecting members of the External Oversight Committee

#### Upcoming Activities

- Stakeholder Workshop #1: Decarbonization Pathways Planning 101
- Developing screening methodology for technologies
- Characterize key risks for portfolio resiliency analysis







# **Decarbonization: Outreach**



Pathways to Decarbonization – Discovery Sessions

December 2020 - January 2021

#### Objective:

- Listen to stakeholders about how they want to be involved.
- IAP2 Level Collaborate

#### Outcome:

- Understand what success looks like to them
- Use input to help shape the outreach plan and create higher satisfaction with the process.
- Create advocates to help carry the message.





# **Discovery Session Takeaways**



- Tend to feel blind-sided need upfront communication, time to digest info and provide input before final decisions
- Recognize need for "layered" approach understanding that all stakeholders are not engaged at same level, including their own membership
- Lean on them, help them translate technical info to their orgs, and provide shareable information (i.e. newsletter & social media copy, infographic, etc.)
- Transparency in how feedback was used or not used, assumptions made behind the decisions, and timeline relative to decision points (loop back)
- Feedback be clear on what we're seeking from them
- Utilize new and "outside the box" communication tactics (i.e. text messaging, board member social media communications, Nextdoor app)
- OPPD doing better than most utilities at engagement and accessibility of information
- Appreciated the opportunity to be engaged early in the process



## **Key Takeaway – Workshop #1**







Your Energy Partner

#### April 7<sup>th</sup>

#### Objective:

- Education and general overview of the project process, timeline and objectives.
- Gather stakeholder feedback on objectives, process, and timeline.
- IAP2 Level Involve

#### Outcome:

- Demonstrate OPPD's incorporation of listening session feedback.
- Gather stakeholder input on process, timeline, objectives.
- Provide transparency on process and future opportunities for input.



## Join us on the journey!



